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ABSTRACT
Background: Regenerative medicine seeks to harness the natural healing abilities of the body and has scope for use in the

treatment of dermatologic conditions. Stem cell therapy, platelet‐rich plasma (PRP), and exosomes are emerging as key

components in regenerative medicine, particularly in skin rejuvenation and repair.

Objectives: The goal of this article is to review the basic science behind the function of stem cells, PRP, and exosomes in

regenerative medicine.

Methods: A literature review was conducted using PubMed and Google Scholar, focusing on basic science literature regarding

the structure, origin, mechanisms of action, and isolation of stem cells, PRP, and exosomes.

Results: The evaluation found that stem cells facilitate skin regeneration by modulating the inflammatory milieu. PRP was

shown to have positive effects on repairing skin elasticity and improving scars through the release of growth factors. Exosomes

were found to enhance fibroblast proliferation and collagen synthesis.

Conclusions: Stem cell therapy, PRP, and exosomes each show mechanisms that render them useful in regenerative medicine.

Future research is needed to further elucidate their mechanisms of action, standardize their isolation procedures, and optimize

their potential for clinical application.

1 | Introduction

Regeneration of living tissues and organs is a combination of stem
cell biology, tissue engineering, and cell transplantation [1]. In
recent decades, these fields of study have intertwined and ulti-
mately produced biological replacements capable of repairing
manifestations of disease. Some of these biological replacement
tools include stem cells, platelet‐rich plasma (PRP), and exosomes.

Stem cells are famously studied for their pluripotent properties,
allowing for differentiation into multiple cell lineages, and capability

to repair the tissue of choice through regeneration. PRP can secrete
trophic factors into the tissue to support and stimulate the process
of regeneration. Exosomes are intercellular communicating vesicles
that carry cargo, including proteins, nucleic acids, and lipids. Trans-
portation of target cargo can be an effective mechanism to stimulate
tissue regeneration. Although stem cells, PRP, and exosome therapy
have similar end goals, there exists a difference in patterns of origin,
isolation methods, structure, and mechanisms of action.

Stem cells, PRP, and exosomes have all been applied in the field
of dermatological regenerative medicine. DNA damage in the
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skin can be due to ultraviolet radiation, reactive oxygen species,
and other forms of trauma [2]. Aging of the skin leads to loss of
repair mechanisms and therefore, use of stem cells, PRP, and
exosome has become an attractive option. Dermatological ap-
plications include skin rejuvenation and wound healing. All
three modalities share mechanisms to increase angiogenesis in
the dermis, increase collagen production, and increase fibro-
blast production. There are also similarities in their outcomes
when applied with other therapies such as microneedling and
lasers.

2 | Stem Cells

Stem cell therapies have been used for many medical applica-
tions, such as bone marrow transplants for different blood and
immune disorders, and more recently, have increasingly been
used in regenerative medicine. A stem cell can both self‐renew
and regenerate differentiated cells in a variety of tissues from an
embryo, fetus, or adult, and can be intentionally produced from
genetically programmed cells, termed induced pluripotent stem
cells [3]. Stem cell potency refers to the differentiation capa-
bilities of the cell. Totipotency is the propensity for a stem cell
to differentiate into any tissue type. Pluripotency is the ability to
recreate multiple cell lineages and any tissue in the body ex-
cluding the placenta. Multipotency describes the capability to
create multiple types of cells in a specific lineage; meanwhile,
bipotency describes the capacity to create two different types of
cells and unipotency refers to creation of one type of cell [4].

2.1 | Origins

Stem cells derived from embryonic tissue can be harvested from
the morula delivering totipotent capabilities or from the sub-
sequent blastocyst with pluripotent properties. Totipotent cells
evolved from the morula differentiate into its first two lineages:
the inner cell mass and trophectoderm. Pluripotent cells are
found in the blastocyst's inner cell mass and, as the zygote
matures, cellular totipotency continues to diminish. None-
theless, these pluripotent embryonic cells can still differentiate
into all three germ layers: the endoderm, mesoderm, and
ectoderm [5].

Stem cells derived from the fetus, amniotic fluid, placenta, and
Wharton's jelly possess a combination of multipotent and plu-
ripotent properties. Fetal stem cells can be isolated from fetal
blood, bone marrow, liver, and kidney. Adult stem cells are
present in fully developed tissues and can be derived from fat,
bone marrow, skeletal muscle, skin, and blood. Hematopoietic
stem cells (HSCs) were previously identified in 1961 as the adult
stem cell derived from blood that proved successful in bone
marrow transplants [6]. Another type of adult stem cell is a
mesenchymal stem cell (MSC) sourced from bone marrow,
adipose tissue, or umbilical cord tissue and can differentiate
into mesenchymal tissue lines. MSCs are considered a multi-
potent cell that uniquely possesses pluripotent properties,
whereas most other adult stem cells only possess multipotent,
bipotent, or unipotent properties [4]. Pluripotent properties
allow for less restriction of lineage differentiation potential

compared to multipotent cells. MSCs' pluripotent properties are
of interest to researchers because they do not possess associated
risks of immune rejection and teratoma formation that pure
pluripotent cells do [7]. Although MSCs can be isolated from
many different types of tissues, Wharton's jelly and other early
life tissues are thought to be more proliferative, immuno-
suppressive, and therapeutically active due to their limited age
of development [8].

2.2 | Methods of Stem Cell Isolation

Embryonic stem cells have previously been isolated from inner
cell mass using immuno‐surgical techniques consisting of the
incubation of a blastocyst with trophectoderm antibodies. This
is then introduced into complement proteins, resulting in lysis
of the trophectoderm, so the only surviving cells are in the inner
cell mass [9]. Somatic cell nuclear transfer is a process where
the oocyte nucleus is removed in culture and replaced with a
somatic cell nucleus from a patient. The cell taken from the
patient and combined with a donated oocyte incorporates the
patient's DNA and allows for patient specificity. The cell is then
divided to the blastocyst stage by chemical and electrical sig-
nals. The inner cell mass can then be isolated, resulting in
embryonic stem cells identical to those of the patient [10].
Single‐cell embryo biopsy is another method that is patient‐
specific and does not create or destroy embryos. Arrested em-
bryos can also be used, but a limitation of verification of the
appropriate quality of the cell line remains. Due to the possi-
bility of cloning using this technique, there are ethical concerns.
These concerns have led to the development of “altered nuclear
transfer,” which is a variant of somatic cell nuclear transfer that
restricts clonality. This method genetically modifies a nucleus
from a somatic cell, which is then transferred into a human
oocyte so that a genetic defect is introduced such that the cell is
incapable of forming a clonal zygote [11].

In regenerative medicine, alternative approaches to adult MSC
isolation are used, such as reprogramming. Reprogramming ded-
ifferentiates adult somatic cells to create pluripotent stem cells
specific to patients without the use of embryos [12]. There is a risk
of cancer formation when mutations of oncogenes and tumor
suppressor genes are induced during the conversion of stem cells
into cancer cells [13]. Fibroblasts have previously been activated
for Oct‐4 and Nanog genes, allowing them to show similar prop-
erties to embryonic cells [14]. Oct‐4 is one transcription factor that
supports self‐renewal and pluripotent properties. Oct‐4 exists in
the inner cell mass as well as embryonic stem cells, embryonic
germ cells, and embryonic carcinoma cells. Oct‐4 deficiency in
mice has shown lack of development past the blastocyst because
no inner cell mass cells have been able to develop [15].

The adult stem cells that have been studied the most are the
CD34+ hematopoietic stem cells isolated from the bone mar-
row. Hematopoietic stem cells can regenerate all hematopoietic
cell lines and are widely used in transplants for patients with
defective or depleted bone marrow. Hematopoietic stem cells
can be isolated through selection of cells expressing CD34+.
These cells can be targeted using an antibody‐dependent or
non‐antibody‐dependent method. Common techniques include
centrifuging a cell suspension to remove red blood cells [16].
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MSCs can be isolated using similar centrifugation techniques,
but have diverse markers from hematopoietic stem cells. MSCs
demonstrate (CD73, CD105, and CD90) and lack less specific
surface markers (CD45, CD34, CD14 or CD11b or CD79α or
CD19, and HLA‐DR) [17]. Isolation is dependent on their ability
to adhere to plastic surfaces. Bone marrow‐derived MSCs can be
washed, counted, and suspended in culture medium. After
24–72 h (about 3 days), the medium is changed, which removes
nonadherent cells. After 1 week, bone marrow stroma is formed
and is maintained by biweekly medium changes. This results in
the elimination of all nonadherent cells and a sample of MSCs
that can be used in hematopoietic stem cell transfer [18].

Adipocyte‐derived stem cells (ASCs) can be isolated from adi-
pose tissue that has either been removed surgically through
liposuction or resection [19]. Currently, no standardized pro-
tocol is in place. The most widely used method described by
Zuk et al. consists of washing samples in phosphate‐buffered
saline and denaturation with 0.075% collagenase at 37°C for
30 min [20]. After this step, multiple cell types will exist in a
medium called stromal vascular fraction (SVF). Dulbecco's
modified Eagle's medium is then added to neutralize the SVF.
For lysis of red blood cells, the sample is centrifuged and then
suspended in NH4 Cl and incubated at room temperature for
10 min. Lastly, the SVF is filtered through a nylon mesh and
incubated at 37°C overnight and 5% CO2. Until adherent cells
reach sub‐confluence, they are kept under standard conditions.
At this point, harvestable SVF can be utilized in vitro and dif-
ferentiated into adipogenic, chondrogenic, and osteogenic cells.

2.3 | MSCs' Mechanism of Action

MSCs are immunomodulatory cells that operate through cell
contact‐dependent mechanisms and soluble factors [21]. MSCs
interact with monocytes and regulatory T cells to promote the
determination of monocytes/macrophages toward an anti‐
inflammatory response. MSCs can produce interleukin (IL)‐6 and
hepatocyte growth factor, both of which increase the inflam-
matory monocyte's release of IL‐10, thereby preventing monocyte
differentiation into dendritic cells and adding to the anti‐
inflammatory response [22]. These monocytes also express MHC
class II, CD45R, and CD11b, which suppress T‐cell activity. MSCs
have also been shown to inhibit the migration and maturation of
dendritic cells. Interestingly, dendritic cells cannot support CD4+

T cell proliferation in the presence of MSCs, compared to when
they are not in the presence of MSCs. After the intravenous (IV)
administration of MSCs, they become caught in the capillary
lung system. The MSCs are then phagocytosed by macrophages
and generate the same anti‐inflammatory response [23]. MSCs
also suppress CD4+ and CD8+ T cells. MSCs activate Th2 cells,
which produce anti‐inflammatory cytokines and increase con-
centrations of regulatory T cells downregulating mechanisms of
autoimmunity. MSCs can also upregulate the formation of reg-
ulatory B cells and downregulate plasmablast formation, which
may play a role in establishing immune tolerance and produce
additional IL‐10 [24]. MSCs can additionally inhibit natural killer
cells from proliferating [23]. All these mechanisms synergistically
drive an anti‐inflammatory response and can be used for a many
different types of regenerative and anti‐inflammatory therapies.

2.4 | Future Applications and Challenges

Embryonic stem cells have shown benefits for diabetes, heart
disease, cerebrovascular disease, liver and renal failure, spinal
cord injuries, and Parkinson's disease [10]. However, embryonic
stem cells are avoided due to the risk of formation of teratomas
due to uncontrolled proliferation, immunological response if
not patient‐specific, and ethical concerns. These ethical issues
include controversies over what is considered the onset of life
and if human reproduction must be necessary. While re-
searching on embryonic stem cells, destruction of embryos and
creation for research purposes are also debated upon. Repro-
gramming cells to produce pluripotent effects avoids this
argument, but other issues remain. Donation of biological ma-
terials and stem cell clinical trials must exist with informed and
voluntary consent [25].

Adult stem cells, hematopoietic stem cells, and MSCs are the
most widely used in regenerative medicine due to ease of iso-
lation from diseased individuals and the absence of ethical
concerns [26]. However, there are still challenges, including the
publicization that adult stem cells are exceptional sources of
plasticity, transdetermination, and transdifferentiation, when
many trials have shown only marginal benefits. Some evidence
points to the effects being more paracrine than regenerative [7].
Fully understanding the mechanism of stem cells is extremely
important. Efficiency must also be refined, and the scale of
procedures must be simplified [27].

Future applications include using the reprogramming method
to delete certain genes from the stem cell to decrease the risk of
development of teratomas. Induced pluripotent cell technology
has also expanded the future for regenerative medicine due to
its ability to reproduce all three germ layers without destroying
embryos. Other future research could consider how to best
generate new tissues by fine‐tuning tissue engineering
mechanical and physiochemical properties of scaffolds [4].

2.5 | PRP

PRP is an autologous concentration of platelets in a small vol-
ume of plasma. It is derived from the patient's own blood and is
characterized by a platelet count significantly higher than
baseline levels found in circulating blood. These levels can vary
from 2 to 3× or from 5 to 9× baseline concentrations depending
on the device used [28]. However, PRP is currently character-
ized by its total platelet concentration, with a minimum con-
centration of 1 × 106/µL [29]. After discovering tissue response
to injury and the release of important bioactive molecules for
healing in the 1980s, PRP began to gain popularity for its use in
tissue repair and regenerative medicine [30]. Platelets contain a
variety of active growth factors and proteins for processes such
as the hemostatic cascade, synthesis of new connective tissue,
and revascularization. The idea behind the therapeutic
approach of PRP lies in the injection of a much higher amount
of platelets, which facilitates and accelerates the healing pro-
cess. Historically, clinical preparation of PRP has not been
standardized, with techniques varying by clinician [29]. To
further complicate the ability to standardize this procedure,
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different types of PRP are used depending on the clinician. The
first is pure platelet‐rich plasma (P‐PRP), which is a leukocyte‐
poor preparation with a low‐density fibrin network [28].
Leukocyte‐rich PRP (LR‐PRP) contains the same product as
PRP but with an increased number of leukocytes. It is worth
noting that this preparation is the most common among the
commercial kits available. Pure platelet‐rich fibrin (P‐PRF) does
not contain leukocytes but contains a high‐density fibrin net-
work. This preparation is only available as a gel and therefore
cannot be injected like P‐PRP and LR‐PRP. Leukocyte‐rich PRF
(LR‐PRF) contains both leukocytes and a high‐density fibrin
network. Additionally, PRP content differs from person to
person, further complicating the ability to create a standardized
procedure. This has led to discrepancies in the number of
platelets collected from plasma and possibly the efficacy of
treatment. PRP has been used as a therapeutic modality in
multiple different specialties, including cardiac surgery, pedi-
atric surgery, gynecology, urology, plastic surgery, and oph-
thalmology [31]. PRP also functions as a novel therapeutic
modality in dermatology and is being used in patients for
various purposes, such as skin rejuvenation, hair growth, and
acceleration of wound healing [32]. PRP is administered
directly into the skin or scalp, where it can exert its regenerative
effects. These treatments will be explored and further ex-
pounded on in this review.

The therapeutic efficacy of PRP is primarily due to the high
concentration of growth factors and cytokines present in
platelets. These growth factors are present in the granules
within platelets, namely, the alpha granules and dense gran-
ules, which are released upon activation [33]. The alpha
granules contain many of these growth factors, including
platelet‐derived growth factor (PDGF), transforming growth
factor‐beta (TGF‐β), vascular endothelial growth factor
(VEGF), and epidermal growth factor (EGF), which contribute
to the various regenerative mechanisms through stimulating
processes such as angiogenesis, cell proliferation and differ-
entiation, and chemotaxis [29]. The dense granules contain
molecules such as serotonin, histamine, dopamine, calcium,
and adenosine, which may increase the permeability of cell
membranes and decrease inflammation [32]. Upon adminis-
tration, PRP contains these bioactive molecules, which are
responsible for the beneficial response seen in treatment. PRP
enhances the proliferation of fibroblasts and the release of
proteins involved in tissue repair and regeneration, leading to
increased cellular turnover and repair. Additionally, the
growth factors in PRP stimulate the production of collagen
through PDGF, a crucial structural protein in the extracellular
matrix of the skin, thereby improving skin texture and elasti-
city. VEGF in PRP promotes angiogenesis, enhancing the
blood supply to treated areas and supporting tissue vitality and
regeneration [30]. Furthermore, specifically in PRP for osteo-
arthritis treatment, PDGF and TGF‐β have both been seen to
reduce inflammation. The exact mechanisms for inflammation
induction and inhibition are elusive, as PRP preparations
contain a mixture of pro‐ and anti‐inflammatory molecules.
For example, Lin et al. reported that PRP treatment reduces
local inflammation by inhibiting chemokine transactivation
and CXCR4‐receptor expression [34]. In short, PRP can mod-
ulate the inflammatory response and induce a robust healing
process.

2.6 | Preparation Protocol

Multiple techniques are used to collect PRP, and reproducible
results have been seen using differential centrifugation [35].
The two main methods of separating PRP from whole blood are
the PRP method and the buffy coat method, both of which
utilize the process of differential centrifugation. The PRP
method utilizes blood from venipuncture, which is then spun at
a lower speed to separate the red blood cells. This is followed by
a spin at higher speeds to separate the platelet concentrate. The
other method is the buffy coat technique, which involves stor-
ing whole blood at room temperature and then spinning at high
speeds to yield three separate layers: RBCs, platelets and white
blood cells, and platelet‐poor plasma. The buffy coat is sepa-
rated and then spun at a low speed to separate the white blood
cells and obtain the PRP. These protocols produce similarly
efficacious samples of PRP, and the most important factor in
obtaining the necessary platelet yield is the centrifugation rate.
The platelet‐rich layer (buffy coat) contains a significantly ele-
vated concentration of platelets compared to whole blood. In
certain protocols, PRP is activated using agents such as calcium
chloride and thrombin to induce the release of growth factors
from the platelets before injection [36]. The term “activation”
mainly refers to two processes: calcium chloride causes the
degranulation of the platelets to release the growth factors
mentioned above and thrombin allows for the cleavage of
fibrinogen, which leads to matrix formation, confining the
treatment to a localized area [37]. Alternatively, activation may
occur in situ following administration into the tissue.

PRP therapy is a unique therapy in the sense that it uses the
patient's own biological resources to promote healing and tissue
regeneration, offering a minimally invasive and autologous
treatment option with a minimal risk of adverse reactions.
Because of this, it has been proven to be beneficial in dermat-
ologic procedures such as androgenetic alopecia, scar revision,
skin rejuvenation, and dermal augmentation [31].

2.7 | Challenges of PRP and the Future of PRP
Therapy

PRP has been used across multiple fields in medicine for the
treatment of various diseases and has been proven to be useful
in the treatment of various conditions such as AGA, scar
treatment, osteoarthritis, and more. However, the lack of stan-
dardization of PRP collection has made comparison of data
between different studies difficult, and more studies using a
standardized procedure need to be carried out [35]. Further-
more, as PRP samples are autologous, results seen in in-
dividuals may vary greatly, as seen in studies using PRP
treatment for AGA [31]. Additionally, genetic polymorphisms
may further determine whether or not a patient will respond to
PRP treatment. Future studies should aim to elucidate how to
maximize the effects of PRP, such as using CD34+ enriched PRP
or other preparations by conducting RCTs. However, the
autologous nature of PRP treatment may be both a benefit and a
hindrance. Although it is highly unlikely for patients to have an
adverse reaction to PRP as it is an autologous form of treatment,
the number of platelets, GFs, and other necessary elements for
significant results may vary from person to person. More
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research in controlled trials may help to pave the way for
standardization of PRP collection and therefore more consistent
results among different providers.

3 | Exosomes

Extracellular vesicles (EVs) encompass three subtypes of na-
noparticulate vesicles: exosomes, microvesicles (MVs), and
apoptotic bodies. EVs can be further categorized on the basis of
their intracellular origin and size. Exosomes are typically
30–150 nm in size, endocytic in origin, and are critical for
intercellular communication in both normal physiology and
pathologic conditions. Exosomes, which are released by all cells
and are found in bodily fluids, have gained significant attention
in research for their implications in disease diagnostics and
treatment [38, 39].

It is well known that cells communicate through hormones,
neurons, paracrine signaling, and direct contact to maintain
homeostasis and respond to stressors in their environment.
Such communication also occurs as cells release EVs, which are
inherently specific to the needs of the parent cell. Exosomes
contain information in the form of nucleic acids, proteins,
lipids, and metabolites that function to affect cellular
processes [40].

Exosomes have been reported to play a role in regenerative
medicine, such as in terms of their ability to decrease inflam-
mation, reverse fibroblast senescence, and promote angiogene-
sis [41, 42]. Structurally, exosomes are flexible and small,
making them amenable for topical use, and can be used as
monotherapy or serve as an adjunct therapy [43, 44]. An
increasingly common dermatologic procedure, microneedling‐
drug delivery, can be used concomitantly with topical exosome
application to increase tissue permeation and increase
efficacy [45].

3.1 | Exosome History

“MVs” were first described by Peter Wolf in 1967 as a byproduct
of platelet ultracentrifugation [46]. In 1971, Leville Crawford
found that platelet‐derived “microparticles” contained lipids
and proteins [47]. It was not until 1981 that the term “exosome”
was used to describe vesicles of 40–1000 nm [48]. In 1983,
exosomes were specified to be smaller, about 100 nm, in size
and released from reticulocytes through a multivesicular body
(MVB) as a mechanism to selectively eliminate receptors during
differentiation [49, 50]. The understanding that exosomes
functioned to remove waste developed to include their role in
antigen presentation, as exosomes were also found to originate
from lymphocytes and dendritic cells [51, 52]. Exosomes were
soon found to originate from mast cells, neutrophils, epithelial
cells, and tumors [53–56]. In addition to proteins and lipids,
exosomes were capable of carrying RNA to target cells that
resulted in phenotypic changes [57, 58]. Specifically,
glioblastoma‐derived exosomes were reported to transport
mRNA and angiogenic peptides that contributed to the prolif-
eration of other glioblastoma cells. Additionally, glioblastoma‐

derived exosome contents were reported in the serum [58]. This
discovery highlighted the role of exosomes in intercellular
communication and underscored their potential in cancer
diagnostics.

The overlap in EV composition makes separation difficult and
the challenge is compounded by the lack of standardized iso-
lation techniques. This challenge contributed to years of con-
founding literature and misidentification of EVs [38, 59, 60].
Although there has been a substantial effort over the last decade
to standardize EV terminology, it is important to interpret
exosome research findings with caution, as findings may be
better generalizable to all EVs [39, 60–62].

3.2 | Exosome Structure

Exosomes are phospholipid, bilayered spheres that are secreted
into the extracellular space. Exosomes are 30–150 nm in size,
1.13–1.19 g/mL in density, and are made of cholesterol, phos-
pholipids, and sphingomyelin [63]. Exosome membranes con-
tain higher lipid concentrations than their parent cell
membranes; the individual lipid concentrations are similar
among exosomes regardless of their parent cell origin [64, 65].

Lipids are quintessential exosome components, as they con-
tribute to its structure, membrane integrity, biogenesis, and
homeostasis [64, 66]. For instance, exosomes have similarities
to detergent‐refractory membranes that allow them to survive
in the extracellular space [67]. The exosome membrane protects
its internal cargo from degradation, such as protecting RNA
from circulating ribonucleases, allowing them to have distal
effects [68]. Additionally, lipids in the exosome membrane
induce bud formation from the MVB to form intraluminal
vesicles (ILVs) during their biogenesis [69].

Exosomes contain several surface molecules, including tetra-
spanins, immunoglobulins, receptors, and ligands [70]. Tetra-
spanins are transmembrane proteins with two extracellular
loops and two intracellular tails; the most commonly identified
exosomal tetraspanins are CD9, CD63, and CD81 [71]. These
tetraspanins are also found in other types of EVs and are not
specific to exosomes [72]. Other membrane proteins include
membrane transport proteins, adhesion molecules, integrins,
major histocompatibility complexes, fusion proteins, and pro-
teins for biogenesis [39, 66, 73, 74]. Due to these membrane
proteins, exosomes have the unique ability to target specific
cells as well as facilitate exosome cargo uptake [75].

3.3 | Exosome Biogenesis

Other EVs, such as MVs and apoptotic bodies, form through an
exocytic pathway and bud from the parent cell membrane,
whereas exosomes form from an endocytic pathway [76]. In
1983, Harding et al. first described a receptor‐mediated en-
docytic pathway that is now well recognized as the exosome
secretion pathway. Eventually, the MVB fuses with the parent
cell membrane, releasing the ILVs into the extracellular space,
where they are referred to as exosomes [77, 78].
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Exosome formation begins as proteins and lipids along the
parent cell membrane and immediate extracellular space bud
inward from the plasma membrane to form an intracellular
early endosome. With interactions between the golgi apparatus
and the endoplasmic reticulum, the early endosome matures
into a late endosome [79, 80]. During this maturation process,
the endosome membrane exchanges sphingomyelin for cer-
amide and Rab5 is substituted for Rab11 [81, 82]. Additionally,
the endosome plasma membrane begins to invaginate to create
ILVs that contain cargo; as such, ILVs are double‐invaginations
from the plasma membrane of the parent cell [39]. ILVs are
analogous to “early exosomes,” and an endosome with ILVs is
referred to as an MVB [83].

The endosome pathway leads to fusion with a lysosome for
degradation or fusion with the plasma membrane for expulsion.
It is thought that the lipid concentration influences which path
the endosome is directed toward. Early in endosomal matura-
tion, ILVs have a higher concentration of cholesterol compared
to more mature ILVs. Exosomes have a high concentration of
cholesterol in their membrane; thus, it is thought that exosomes
form during early maturation [84]. Interestingly, MVBs that
have lower internal cholesterol levels are directed to the alter-
nate endosomal pathway: lysosomal destruction [85].

Although complex, there are two better defined pathways by
which an ILV is loaded with its specific cargo: the cytoplasmic
endosomal sorting complex required for the transport (ESCRT)‐
dependent pathway and the ESCRT‐independent pathway [86,
87]. The ESCRT‐dependent pathway consists of class E vacuolar
protein sorting (Vps) proteins that combine to make ESCRT
complexes 0 through III. Each of the four complexes works in a
consecutive fashion to assemble, bud, and dissociate the exo-
some from the parent cell. Moreover, Vps4 plays key roles in
ILV formation during maturation and complex dissociation
during exosome expulsion [70].

ESCRT‐associated proteins include ALIX, TSG101, HSC70, and
HSP90B. Interestingly, because ESCRT proteins and their
associated proteins are involved in exosome generation, these
proteins are found in exosomes regardless of the parent cell.
Thus, these protein markers are used as exosome biomarkers
[38, 88].

Proteins and lipids allow ILV formation in an ESCRT‐
independent pathway. Tetraspanins are involved in numerous
steps as well as ceramides and sphingolipids [87, 89]. For ex-
ample, lipid species accumulate to form lipids rafts, which induce
curvature in the endosome membrane, facilitating ILV formation
[87]. Several Rab‐associated GTPases function to coordinate
MVB trafficking and fusion with the parent cell plasma mem-
brane [90]. Specifically, Rab7, Rab11, Rab27, and Rab35 have
been implicated [88, 91–93]. Studies have shown that the soluble
NSF‐attachment protein receptor (SNARE) complex and its
associated proteins coordinate MVB fusion with the plasma
membrane [94]. These mechanisms are still unclear in the
scientific literature and likely vary among different cell types,
indicating their cell‐type specificity [95, 96]. This specificity is
seen in melanoma‐derived exosomes, as their biogenesis is
unaffected by loss of ceramide synthesis, emphasizing that
ESCRT‐independent pathways are cell‐type specific [97].

ESCRT is a ubiquitin‐dependent process and is associated with
ubiquitin proteins such as Hrs, STAM1, and TSG101 [98].
Proteins, nuclear content, and lipids are each identified and
loaded as cargo differently. For instance, some proteins must be
ubiquitinated to enter the endosomal pathway [99]. RNA has
several different proteins, termed RNA‐binding proteins, that
give RNA the appropriate signal to then be loaded into exo-
somes [100].

3.4 | Exosome's Mechanism of Action

There are different mechanisms by which an exosome docks and
communicates with its target cell membrane. The exosome can
communicate via a target cell membrane receptor that elicits an
intracellular response, it can fuse with the target cell membrane,
delivering its cargo directly inside, or the exosome can be inter-
nalized through endocytosis [101–103]. There are scenarios
where exosomes interact with their target cell indirectly via a
soluble exosomal ligand. For example, cancer cells have been
found to release CD46, a complement inhibitor, via exosomes to
confer complement resistance among neoplastic cells [101].

Exosomal cargo communicates with the target cell by either
directly stimulating the cell membrane ligands, by transferring
activated receptors, or by delivering proteins, lipids, or RNA
that reprogram the target cell [104]. The various methods that
exosomes use to interact with target cells vary based on the
exosome's parent cell. Exosome‐mediated immune regulation is
commonly communicated through receptor–ligand interac-
tions; for example, dendritic cell‐derived exosomes bind toll‐like
receptors on bacteria to increase the inflammatory response and
bind TNF receptors to reduce cell apoptosis [105, 106]. One
mechanism by which exosomes directly deliver their cargo is
through fusion with the target cell and is speculated to be a
route for exosomes targeting tumor cells, as seen in melanoma
cells [107]. A recently identified mechanism of interaction,
termed filopodia, was reported by Heusermann et al. in 2016.
Filopodia are actin filaments protruding from the target cell
surface that guide exosomes toward the membrane, where they
are then endocytosed [81]. This mechanism has been reported
in fibroblasts and resembles bacterial and viral entry [108]. One
of the most common ways by which exosomes interact with
target cells is through direct internalization of the exosome into
the cell. This process is fast and increased by high temperatures
[109, 110]. Exosomes that interact via direct internalization are
commonly routed for lysosomal degradation, and thus their
cargo is released into the cytoplasm of the target cell. If not
degraded by a lysosome, exosomes can remain in the endocytic
pathway by entering the cell and joining with an early endo-
some. In this way, exosome uptake and secretion are often in-
termingled, and the exosomes being released from cells are a
combination of new and recycled exosomes [39, 111]. Although
still unclear, the exosome and target cell interaction is not
random. Tropism is likely due to parent cell type as well as
specific recognition between exosome and target cell membrane
components [110, 112, 113].

Endocytosis, or direct internalization, of exosomes includes
mechanisms characterized by clathrin, lipid rafts, caveolin,
pinocytosis, and phagocytosis. Importantly, all endocytosed
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exosomes enter the cell via an endosomal vesicle made of the
receiving cell's plasma membrane. Therefore, the vesicle must
leave the endosome pathway to allow the exosome to exert its
intended effect; this process is known as “endosomal escape”
[112, 114, 115]. Several mechanisms for endosomal escape have
been studied, such as the physiologic endosomal acidification
that activates exosome cargo, passive diffusion of cargo through
the cytoplasm, trafficking of exosomes to the endoplasmic
reticulum, and fusing exosome‐containing endosomes with late
endosomes via endosome penetration [103, 116–118].

Clathrin‐mediated endocytosis involves the accumulation of
target cell membrane proteins and receptors to form clathrin‐
coated vesicles that internalize exosomes with subsequent
fusion into an endosome. Clathrin‐mediated endocytosis is
seen in many cell types and is the most highly regulated
exosomal uptake mechanism [119]. Similarly, calveolin‐
mediated endocytosis is mediated by the accumulation of
calveolin proteins along the target cell membrane that induce
membrane invaginations [120]. This mechanism involves
proteins, such as dynamin‐2, that are found in clathrin‐
mediated endocytosis [121].

Clathrin and calveolin‐mediated endocytosis are limited in their
ability to consume clusters of exosomes; this is overcome by
pinocytosis and phagocytosis, which are endocytic pathways that
form large vacuoles and can engulf groups of exosomes [122].
Macro‐ and micro‐pinocytosis are both dependent on growth
factors such as epidermal growth factor receptor stimulation
[123, 124]. Macro‐pinocytosis is driven by lamellopodia and
receptor tyrosine kinase‐induced membrane ruffling that form
pinosomes and subsequently fuse with the endosome pathway
[123, 125]. Lastly, phagocytosis depends on phosphatidylinositol‐
3‐kinase and phospholipase C for the phagosome to close around
exosomes and fuse with a lysosome to form a phagolysosome
[126]. Phagocytosis is commonly used by macrophages and
dendritic cells to engulf exosomes [127].

3.5 | Exosomes in Regenerative Medicine

Regenerative medicine utilizes cells, biologic cues, and scaffolds
to produce an intended effect; exosomes are categorized as
biologic cues [128]. Due to their intercellular communicative
abilities, exosomes play an important role in regenerative
medicine, as they stimulate the body's natural ability to heal
itself [129]. Specifically, exosomes do this by modulating the
epigenetics of target cells through RNA species and protein
[129, 130].

Studies show that exosomes play a role in musculoskeletal
regeneration. Inflammatory cytokines that cause osteoarthritis
are influenced by miRNAs; exosomal transport of miRNAs has
been shown to decrease cytokine concentration, resulting in
chondrocyte proliferation and decreasing chondrocyte apoptosis
[131, 132]. Exosomes have been implicated in healing tendonitis
by increasing matrix metalloproteinases (MMPs) and improving
osteoporosis by increasing osteoblast proliferation [133, 134].
Exosomes have also been reported in neurologic regeneration.
Intranasal administration of exosomes improved motor

function in spinal cord injury through increased angiogenesis
and axonal regeneration [135].

Many dermatologic applications of exosomal rejuvenation are
under investigation. Ultraviolet (UV) radiation produces vari-
ous cellular and extracellular changes within the skin, such as
thickening of the epidermis, disorganization of collagen and
elastic fibers, gene alterations, and morphologic changes of
cutaneous cells [136]. Increasing cellular and extracellular
components, such as collagen and elastin, are critical for skin
rejuvenation [137].

Stem cells are commonly used to obtain exosomes and the stem
cell's origin often determines the cargo contained within the
exosome. Umbilical cord stem cells (UCSCs) produce exosomes
that contain a protein found to mediate UV‐induced reactive
oxygen species through the SIRT1 pathway [138]. ASC‐derived
exosomes contain miRNA that modulate fibroblast prolifera-
tion, protect against UV radiation, and affect collagen synthesis
as well as proteins that increase collagen synthesis. These
changes work synergistically to heal human dermal fibroblasts
(HDFs) with UV damage [139]. Specifically, ASC‐derived exo-
somes contain miR‐1246, which leads to a decrease of target cell
MMPs and an increase in the TFG‐β/SMAD pathway, resulting
in the upregulation of pro‐collagen and an anti‐inflammatory
milieu [140]. Bone marrow stem cell‐derived exosomes increase
collagen through the MAP kinase pathway and decrease UV‐
induced reactive oxidative stress [141]. Interestingly, adult stem
cells reversed to pluripotent stem cells produce exosomes that
reduce the expression of an aging marker: SA‐B‐Gal. These
pluripotent stem cell‐derived exosomes also reverse HDF
senescence [142, 143].

It is noteworthy that platelets are another source of exosomes
and confer advantages to stem cell‐derived exosomes. Blood
donations are typically used for red blood cells contributing to a
relative excess in platelet donations, providing a source of
platelets to extract exosomes from. Additionally, platelet‐
derived exosomes avoid the challenges with cell expansion that
is often associated with stem cell‐derived exosomes [144, 145].
In a human study, topical administration of platelet‐derived
exosomes reduced facial erythema and melanin pigmentation in
6 weeks [146]. HDFs produce exosomes that impact growth
differentiation factor 11 (GDF11); by increasing the expression
of GDF11, HDF‐derived exosomes protect HDFs from photo-
aging [147].

Exosomes also make for a promising drug delivery vesicle [148].
One of the first applications of this use found that exosomes
loaded with curcumin can result in a greater anti‐inflammatory
effect compared to curcumin without a delivery vehicle [149].
Exosomes can also be engineered to effectively carry miRNA to
target cells, such as in cancer [39].

3.6 | Exosome Challenges and Future Directions

The biggest challenge facing exosomes is how to isolate a large
sample that is pure and intact. Additionally, the technique
should be affordable and timely. Commonly used isolation
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methods include ultracentrifugation, ultrafiltration, tangential
flow filtration (TFF), immunoaffinity, precipitation, size exclu-
sion chromatography (SEC), and microfluidic technology [150,
151]. Size‐based techniques include precipitation, SEC, and
microfluidic sorting; these techniques often yield contaminated
exosome fractions that erroneously include proteins, lipids, and
other EVs [152]. Differential ultracentrifugation is the current
gold standard; yet, is complicated by contaminants and shear
forces that can damage the exosome [153]. SEC and ultra-
centrifugation are commonly used together to produce pure and
structurally intact exosomes [154]. TFF combines membrane
filtration with flow filtration and has been demonstrated to be a
time‐efficient, reproducible, and scalable isolation technique.
Moreover, there is evidence that TFF paired with SEC is
superior to ultracentrifugation and SEC [150, 155]. Im-
munoaffinity techniques are most effective for isolating a spe-
cific population of exosomes, as they depend on a target protein
or membrane component [156]. Microfluidic technique ex-
amples include filtration, inertial lift force, viscoelastic, lateral
displacement, acoustic waves, and electrophoretics; these are
limited by user ability and operating costs [153]. The hetero-
geneity of exosomes contributes to the difficulty in standardiz-
ing isolation techniques and proteomic analyses suggest that
protein‐purification methods not be used [157]. The ideal exo-
some separation method will be able to produce a large quantity
of pure exosomes from a specific parent cell [158].

Enzyme‐linked immunosorbent assays (ELISAs), polymerase
chain reactions (PCR), DNA sequencing, and microanalyses can
all be used to characterize exosomes once they have been iso-
lated. Each of these depends on the presence of an exosome
marker [159]. Nanoparticle tracking analysis (NTA) has become
the gold standard for exosome quantification as it does not
depend on a marker. NTA has disadvantages in size discrimi-
nation and, like other methods, needs standardization to facil-
itate reproducibility [153, 160].

Along with isolation and characterization methods, exosome
storage techniques have not been standardized. At one point,
the International Society of Extracellular Vesicles (ISEV) rec-
ommended that EV be stored at –80°C; yet, there is evidence
that significant changes occur at this temperature [72, 161].
Several studies have found that the EV concentration and purity
decrease, whereas the particle size increases in a time‐
dependent manner when stored at –80°C [162–164]. Similar to
challenges with other regenerative therapies, human‐derived
exosomes may vary depending on donor demographics, leading
to inconsistent results and irreproducibility [165].

Countries all over the world are in the process of developing
therapeutic EVs, including natural EVs, engineered EVs, and
hybridized EVs. More research is needed to understand the
effect of exosomes within the body, especially when delivered
systemically. Although studies have demonstrated positive
safety profiles, it is important to evaluate the distribution of
exosomes within the body and the possibility of unforeseen
effects, given that nuclear content may be transferred to
unintended cells.

In 2012, the first ISEV conference was held and the National
Institute of Health (NIH) developed a common fund initiative

titled “Clinical Utility of Extracellular RNA for Therapy
Development.” In an effort to organize EV research, the ISEV
created the Minimal Information for Studies of EVs (MISEV) in
2014, with revisions in 2018 and the newest release in 2023.
These recommendations were originally published to create
guidelines for those researching exosomes and have evolved to
include the latest in exosome production, separation, and dif-
ferentiation as well as new discoveries in EV research [60,
166, 167].

In the United States, there are currently no FDA‐approved
exosome products and clinical applications of exosomes are
being used off‐label. There are commercially available products,
commonly combined with moisturizers or serums, although
more research is needed to assess possible conformational
changes that could alter the efficacy of these products over
time [168].

4 | Discussion

The use of exosomes, stem cells, and PRP represents excellent
potential for new biotechnology in regenerative medicine.
Exosomes, when compared with PRP and stem cells, offer un-
ique advantages. Due to their small size, exosomes can escape
phagocytosis in the liver and spleen but are large enough to
remain in the vasculature [169]. Their size also allows them to
transfer across barriers, such as the blood–brain barrier [170].
Exosomes can be engineered to deliver drugs, they can be stored
over long periods of time, and their long‐term use has a positive
safety profile to date [171, 172]. In comparison to stem cells,
exosomes cannot replicate and thus do not confer the risk of
malignant transformation. Unlike stem cells, exosomes do not
raise the same ethical concerns of clonality and embryo
creation/destruction.

In comparison to exosomes, stem cells can be isolated in large
quantities, there are decades of clinical trial evidence, and thus
there are FDA guidelines governing their use. A downside to
stem cells is that they have the potential to differentiate and
lead to the risk of malignant transformation. Stem cells are also
difficult to store, graft, and transport and also have the potential
to elicit a host immune response, have quality issues before
administration, and have a short half‐life [171, 173].

The efficacy of PRP depends on the donor; specifically, PRP is
affected by donor demographics and lifestyle behaviors such as
age and smoking status. Like exosomes, isolation techniques for
PRP are not standardized [174]. The variations in the collection
and preparation of PRP play a role in its unpredictable clinical
efficacy [175]. Additionally, PRP preparations are known to
have a short half‐life [176].

Synergistic methods using stem cells, PRP, and exosomes have
been studied. In a study by Yongyi Zhang in 2024, regeneration
after peripheral nerve damage was studied. Although MSC
therapy has potential for success, poor engraftment, and neu-
rotrophic effects exist. PRP‐derived exosomes were isolated and
applied to an environment with MSCs. PRP‐derived exosomes
were found to significantly increase MSC proliferation, viability,
and mobility, as well as decrease stress‐induced MSC apoptosis.
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MSC quality was maintained and senescence was decreased. In
vivo, high therapeutic efficacy was recorded due to an increase
in axonal regeneration and remyelination. The PRP‐derived
exosomes in vitro activated the P13K/Akt signaling pathway in
MSCs [177].

Stem cells, PRP, and exosomes are also being used together in
engineering skin substitutes. In a study by Yunchuan Wang
2023, type I collagen and PRP were combined to form a scaffold.
Adipose MSC‐derived exosomes were then added to the scaffold
to increase skin performance. This combination scaffold func-
tioned to downregulate inflammation and enhance cell prolif-
eration, angiogenesis, and wound healing. Importantly, the
exosomes retained their anti‐inflammatory properties when
incorporated into the collagen and PRP scaffold [178].

5 | Conclusion

Stem cells, PRP, and exosomes have strengths and promising
advancements have been achieved in the field of regenerative
medicine. Use of stem cells is a fundamental regenerative
method that can target, proliferate, and directly replace tissues.
There is potential for PRP to be a valuable tool in regenerative
medicine with its numerous metabolites that have a role in
regenerative medicine. Exosomes have the unique ability to act
as a liaison between cells while transporting bioactive molecules,
offering a new mechanism for regeneration. Future research
should aim to clarify their mechanisms of action as well as
standardize their isolation and characterization techniques.
Although there is evidence of their efficacy when using syner-
gistically, further research is necessary to evaluate the effective-
ness and feasibility of using these three therapies concomitantly.
Stem cells, PRP, and exosomes possess numerous qualities that
have added to their success in regenerative medicine.
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