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Abstract: Exosomes are nano-sized membranous vesicles produced by nearly all types of cells. Since
exosome-like vesicles are produced in an evolutionarily conserved manner for information and
function transfer from the originating cells to recipient cells, an increasing number of studies have
focused on their application as therapeutic agents, drug delivery vehicles, and diagnostic targets.
Analysis of the in vivo distribution of exosomes is a prerequisite for the development of exosome-
based therapeutics and drug delivery vehicles with accurate prediction of therapeutic dose and
potential side effects. Various attempts to evaluate the biodistribution of exosomes obtained from
different sources have been reported. In this review, we examined the current trends and the
advantages and disadvantages of the methods used to determine the biodistribution of exosomes
by molecular imaging. We also reviewed 29 publications to compare the methods employed to
isolate, analyze, and label exosomes as well as to determine the biodistribution of labeled exosomes.
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1. Introduction

According to studies conducted over the last half century, nearly all cells on earth produce
exosomes or exosome-like particles consisting of a lipid bilayer membrane [1]. The shedding of
exosomes is an evolutionarily well-conserved phenomenon found in all biological kingdoms [1]. The
discovery of exosomes occurred in the 1940s and platelet-derived particles in normal plasma were
first reported in 1946 [2] followed by a re-description as platelet dust in 1967 [3]. However, exosomes
received little attention for several decades because they were regarded as cellular garbage bins [4].
In the mid-2000s, important discoveries regarding exosomes changed this trend. In 2007, the transfer
of genetic materials such as mRNAs and miRNAs in exosomes was reported [5]. Research on
exosomes has been increased explosively since then, with more than 3000 papers published annually
in 2018 and 2019 (Figure 1) [1,2,4-22]. Exosomes, ranging 100-200 nm, from stem cells were reported
to mediate the paracrine therapeutic effects of stem cells [6]. Exosomes are important mediators of
signal transfer in both multicellular and unicellular organisms. They are also important signaling
mediators across species [14,23]. In addition to basic research, medical and healthcare industrial
applications of exosomes for the development of therapeutics, drug delivery vehicles, and liquid
biopsies are rapidly progressing [24-26].
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Figure 1. Trends of publications and major discoveries regarding exosomes. The number of
publications was retrieved with a PubMed search using the keywords exosomes, exosome,
extracellular vesicles, extracellular vesicle, and platelet-derived particles on 17 October 2019.

2. Exosomes

2.1. Exosomes and Extracellular Vesicles

Extracellular vesicles (EVs) are lipid bilayered vesicles shed by cells. Three major types of EVs
have been characterized according to their biogenesis: (1) exosomes are produced through the most
complex process; specifically, inward budding of the cellular membrane results in the formation of
early endosomes. Another inward budding of the early endosomal membrane results in
multivesicular bodies (MVBs). Finally, fusion of MVBs with the plasma membrane sheds exosomes
toward the extracellular space. The diameter of exosomes ranges from 30 to 200 nm; (2) microvesicles
are produced from simple outward budding of the plasma membrane. The size of microvesicles are
known to be from 100 or 200 to 1000 nm; and (3) apoptotic bodies are produced as a result of apoptotic
cell death [27]. The apoptotic bodies are the largest type of EVs with size from 500 to 2000 nm in
diameter.

Since apoptotic bodies are byproducts of cell death, numerous attempts to develop EV-based
therapeutics have focused on exosomes and microvesicles. Especially, exosomes are widely accepted
as next generation therapeutics due to the extensive investigation of potential applications [28,29]. As
mentioned, the size ranges of exosomes and microvesicles overlap and it is difficult to differentially
isolate these EVs according to their size [30-32]. Recently, an alternative term, small extracellular
vesicles (sEVs), was proposed to refer to EVs with diameters smaller than 200 nm [21]. In this review,
we refer to these smaller EVs as exosomes.

Specific markers of exosomes have been reported: ALIX and TSG101 are well-established
markers of exosomes, and tetraspanins such as CD9, CD63, and CDS81 are specific markers on the
exosomal membrane. Additionally, exosomes contain a variety of specific proteins depending on
their cells of origin [31]. Interestingly, it has been reported that exosomes derived from mesenchymal
stem cells (MSCs) or HEK 293T cells do not contain class I and class Il human major histocompatibility
complex (MHC) proteins or co-stimulatory molecules such as CD80 and CD86. The absence of these
proteins on the exosomal surface suggests no immune rejection can be expected for allogeneic
therapeutics [32-35]. Exosomes derived from stem cells are actively being developed as a cell-free
therapy because they recapitulate the functions of stem cells such as repair, regeneration, anti-
inflation, and immune modulation without the limitations and risks of stem cells themselves
[30,31,36,37]. As an example, exosomes derived from MSCs have therapeutic effects on various
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diseases including myocardial infarction [6,38], CCl4-induced liver injury [39], graft-versus-host
disease (GvHD) [20], acute and chronic kidney injury [40], and atopic dermatitis [34,41].

The size of exosomes enables their safe systemic administration through multiple routes without
the risk of embolism compared to cell-based therapy [42]. There is also a low risk of tumorigenesis
since exosomes cannot replicate themselves [43]. In addition, the use of exosomes would avoid
various issues related to cell therapy such as the inability to sterilize the cells, short shelf-life, and
limited quality control (QC) before release [41,44]. A couple of studies have also reported that
exosomes from MSCs and HEK 293T did not cause toxicity in vivo or in vitro [44—48]. A recent study
suggested that long-term repetitive injection of exosomes does not induce toxicity [45]. Nano-sized
exosomes may reach and accumulate in additional tissues beyond the tissues of therapeutic interest
through systemic administration. Therefore, analysis of the biodistribution following administration
through the intended route is a prerequisite for the development of exosome-based therapeutics.

2.2. Technologies for Isolation of Exosomes

The most important hurdle to overcome for exosome-based therapy is development of the
proper technologies for large scale isolation of exosomes [49]. Exosomes from different sources have
been isolated with various experimental methods such as differential ultracentrifugation (UC),
density gradient ultracentrifugation (DGUC), ultrafiltration (UF), size exclusion chromatography
(SEC), precipitation, and tangential flow filtration (TFF) [50,51]. According to a recent report, UC is
the most widely used method to isolate exosomes from conditioned media of MSCs [24]. Commercial
kits, which are mostly based on the precipitation of proteins, were the second choice for exosome
isolation among the 126 papers analyzed in a recent report [24].

Among various methods, TFF has been proposed as the ideal method for industrial manufacture
of exosomes [51]. Compared to other methods, which have limited compliance with good
manufacturing practice (GMP), the availability of GMP-compliant TFF systems may also result in
validated process control and GMP documents [50]. Methods based on UC have a risk of producing
exosomes with co-precipitated contaminants and functional loss due to exosome aggregation caused
by high pressure during centrifugation. The media used in DGUC may inhibit the function of
exosomes [51]. Commercial kits based on protein precipitation are widely used in many academic
labs. However, the additives used for precipitation (e.g., polyethylene glycol (PEG)) may inhibit the
biological functions of exosomes. Although SEC has the advantage of removing proteins smaller than
exosomes, a low recovery rate and the potential loss of exosome function were reported [51]. In
principle, SEC cannot distinguish exosomes from non-exosomal particles with similar sizes. Recent
reports revealed the functional importance of proteins associated with the surface of exosomes
[52,53]. These results suggest that careful selection of the proper methods is important to isolate
functional exosomes without the loss of these surface-associated proteins.

2.3. Quality Control of Exosomes

The QC of isolated exosomes is of importance for both reproducible research and the
development of therapeutics. In an international effort to establish standards for exosome analysis,
the Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV 2018) was suggested
through a series of publications [21,54,55]. Many studies also reported on the GMP production of
exosomes for the development of therapeutics with suggested release criteria [45,50,56—61]. The
worldwide market for exosome-based therapy is expected to grow from 5 million USD in 2016 to 10.0
million USD in 2021, with a compound annual growth rate (CAGR) of 14.9% [62]. In terms of
regulation, fast-track approval of exosome therapeutics by regulatory authorities in Korea, Italy, and
China is expected [62]. The Korea Ministry of Food and Drug Safety (MFDS) published the Guideline
on Quality, Non-clinical and Clinical Assessment of Extracellular Vesicles Therapy Products in 2018
[22]. As shown in Table 1, most of the criteria in the MISEV 2018 and the MFDS Guideline are quite
similar. The MFDS Guideline also includes guides for the characterization of starting materials,
methods for the production, isolation, and characterization of exosomes, stability testing, the
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consideration of non-clinical studies, toxicological evaluation, and the considerations of clinical

studies.

Table 1. Comparison of Minimal Information for Studies of Extracellular Vesicles 2018 (MISEV2018)
and the Korea Ministry of Food and Drug Safety (MFDS) Guideline.

QC Criteria

MISEV2018 Recommendation

MEFDS Guideline (2018)

Examples

Exosome Number
(or quantification)

Global quantification by at least
two methods: protein amount,
particle number, lipid amount, etc.

Number of vesicles (or
particles) and total protein
amount or others

Nanoparticle tracking
analysis (NTA)
Protein quantification

Exosome Size

RPS, NTA, DLS, etc.

NTA, DLS, RPS, fluorescence
correlation spectroscopy, etc.

NTA

Identity

Protein markers;

At least semi-quantitative
method to detect proteins,

Western blot: CD9,
CDe63, CD81, ALIX,
TSG101

Phospholipids RNAs, or lipids enriched in FCM: CD9, CDé63,
exosome CD81, and more
ELISA
Ratlos of two quaﬁtlﬁcat‘lon For proteins Whl.Ch are not ELISA for Calnexin or
. figures (e.g., protein:particle) expected to enrich in exosomes;
Purity . o\ GM130
Assessment of absence of expected For process impurities: serum . .
L . S ELISA for impurities
contamination albumin, antibiotics, etc.
Various methods:
Biological assay which can immune-modulation,
Potency Assays Dose-response assessment . .
represent MoA proliferation, collagen,
etc.
Others not mentioned Mycoplasma, Sterility,

Endotoxin, and Virus tests

3. Analysis of Exosomes Biodistribution

3.1. Bioimaging Modalities

Various modalities, such as bioluminescence imaging (BLI), nuclear, fluorescence, and magnetic
resonance imaging (MRI) [63-65], have been used for in vivo imaging (Table 2). In general, BLI is
known to have the highest sensitivity and high signal-to-noise ratio while nuclear imaging has the
highest penetration [63]. However, BLI with luciferase requires additional administration of
substrates for luciferase and is limited by the low spatial and temporal resolution. Nuclear imaging
requires hazardous radioisotopes with low spatial resolution and high cost. Fluorescence imaging
with near infrared (NIR) fluorescent dyes is limited by the spatial and temporal resolution.
Fluorescence imaging using fluorescent proteins (FP) has the highest spatial resolution. However, the
low penetration of FP fluorescence does not allow noninvasive in vivo imaging. MRI has high
penetration with high spatial and temporal resolution but is limited by low sensitivity and high cost.

Table 2. Comparison of bioimaging modalities.

Modality Examples Pros Cons
Highest itivi
ighest sensitivity Substrate needed
Bioluminescence Imagin (1071077 mole/L) Medium penetration (mm-cm)
&8 Luciferase Medium cost P

[63,64] Low spatial resolution (mm)

High signal-to-noise
&1 518 Low temporal resolution (sec-min)

(compared to fluorescence)
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Highest penetration (m)

. High sensitivity (10-10-10-12 Hazardous
Nuclear Imaging R R
99 mTc mole/L) Low spatial resolution (mm)
(PET/SPECT) [63-65] . . .
Medium temporal resolution High cost
(10 s—min)

Medium penetration

R (mm-cm) X X
NIR Fluorescence Imaging . . L. Low spatial resolution (mm)
[63,64] DiR Medium sensitivity Low temporal resolution (s—min)
(109-10-2 mole/L)
Low cost

Highest spatial resolution
GFP (nm)
Medium sensitivity

Fluorescent Protein
Imaging [63,64]

Lowest penetration (mm): does not
allow noninvasive in vivo imaging

Highest penetration (m)
Magnetic Resonance SPIO High spatial resolution (um) Lowest sensitivity (10-*-10-> mole/L)
Imaging (MRI) [63,64] Highest temporal resolution High cost
(min-h)

3.2. Labeling Methods for Exosomes

For in vivo imaging, exosomes have to be labeled with probes using proper methods. Methods
for labeling probes include covalent binding, genetic modification, membrane integration,
encapsulation (or internalization), and metabolic labeling (Table 3).

3.2.1. Covalent Binding

Covalent binding can be used to label exosomes by reacting them with probes that have
functional moieties. Due to the covalent bonding, labeled probes tightly bind to exosomes with
minimal dissociation. However, nonspecific exosomal proteins may also be labeled when using this
method. Additionally, the labeling of exosomal surface proteins may affect their function and/or
structure resulting in altered interactions of the exosomes with the target cells. It was recently
reported that the modification of surface proteins altered the biodistribution of exosomes [66].
According to this report, treatment of glycosidase with exosomes resulted in a slight increase in the
lung distribution of exosomes in mice compared to the distribution of untreated exosomes. However,
it is necessary to further explore this finding with a large number of animals to obtain more
statistically significant results since only three mice per group were used in the study. Another study
performed without covalent binding suggested that labeling exosomes with lipophilic dyes also
slightly changes the biodistribution of exosomes. The researchers labeled exosomes containing
luciferase, with a lipophilic fluorescent dye and compared the biodistribution of the exosomes with
and without the lipophilic dyes [67]. The exosomes without the lipophilic dye, accumulated in the
organs in the following order: lung > liver > spleen > kidney. On the contrary, the exosomes with the
lipophilic dye accumulated in the organs in the following order: liver > lung and spleen. Taken
together, it is necessary to develop a method to analyze the effect of exosome surface modification.

3.2.2. Surface Modification

Surface modification of exosomes can be avoided by genetic modification to load probe proteins
into exosomes. To date, luciferase proteins are mostly used for genetic modification (Table 4).
However, genetic modification may change the property of cells and even exosomes. Uneven loading
of probe proteins is another issue that needs to be addressed [68,69].

3.2.3. Membrane Integration

The most widely used labeling method for exosomes is membrane integration of lipophilic
fluorescent dyes. This method is simple and easy, but carries the risk of exosome aggregation [65].
Another issue with lipophilic dyes is that they can label both lipoproteins and lipid micelles.
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Lipophilic dyes have been widely used to analyze the biodistribution of cells for the development of
cell-based therapies. A study reported that there was no transfer of lipophilic dyes such as PKH67 or
Dil from labeled to unlabeled cells in co-culture conditions [70]. These results suggest that there is a
low risk of background signals resulting from the transfer of lipophilic dyes released from exosome
membranes to the target tissue or cells. On the other hand, the long in vivo half-life of lipophilic dyes
may cause pseudo signals after the clearance of exosomes [65]. The in vivo half-life of PKH2 and
PKH26 was reported to be 12 days and more than 100 days, respectively [71]. Dialkylcarbocyanine
dyes, such as DiD, Dil, DiO, and DiR, are also widely used. The in vivo half-life of DiR is known to
be approximately 4 weeks [72]. Taken together, it is necessary to include a control containing
lipophilic dyes alone [45]. Another potential issue with the use of lipophilic dyes is the formation of
micelles in the liquid because of the lipophilic nature of the dyes [73]. When PKH26 or CM-Dil was
incubated in phosphate-buffered saline (PBS) without exosomes, there were detectable levels of
particles. On the contrary, in our studies, no detectable particles were observed when PKH dyes were
incubated in the PBS without exosomes. In addition, no detectable changes in particle numbers were
observed when PKH dyes were reacted with exosomes at the appropriate concentration (unpublished
observation). Again, it is important to include a negative control that consists of the lipophilic dyes
in the same buffer without exosomes. Since removal of free unlabeled dyes is a prerequisite, it is also
important to process this negative control using with same removal method.

3.2.4. Encapsulation

Encapsulation can be applied to label exosomes, while avoiding surface modification. However,
electroporation may cause the aggregation of exosomes or structural distortion of the membrane,
resulting in fused exosomes [65]. When lipophilic materials are used for encapsulation, it is difficult
to exclude the possibility of sustained release of internalized probes from the exosomes. It is expected
that uneven distribution of transporter proteins on the exosome membrane may cause uneven
loading of probes when a transporter protein is utilized for the encapsulation of probes. The
expression of a specific transporter protein is also limited by the cell types.

3.2.5. Metabolic Labeling

Metabolic labeling of exosomes is achievable with the addition of specific substances during the
cell culture process. After the isolation of metabolically labeled exosomes, covalent binding of the
probes can be achieved with click chemistry [74]. However, the addition of extra substances during
cell culture may cause changes in the characteristics of the cells or exosomes.

3.3. Analysis of Biodistribution of Exosomes in Literature

We analyzed 29 published papers that reported biodistribution studies of different exosomes or
EVs (Table 4). The most widely used labeling method was membrane integration of lipophilic dyes
followed by covalent binding, encapsulation (or internalization), and genetic engineering (Figure 2).
Only one paper described metabolic labeling.
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All four papers involving genetic engineering described the use of luciferases. No publication
was reported using fluorescent proteins (Table 4). As discussed, the low penetration of fluorescence
is not suitable for noninvasive in vivo imaging (Table 2). Genetic engineering may cause changes in
the characteristics of host cells or even exosomes. When genetically modified cells are used to produce
labeled exosomes, the possibility of differences in the characteristics of labeled exosomes for
biodistribution analysis and unlabeled exosomes for therapeutic use cannot be excluded. On the other
hand, genetically labeled exosomes have an advantage in comparing their in vivo distribution with
and without additional labeling. Especially, genetically labeled exosomes can be utilized to monitor
the effects of surface modifications, such as covalent binding or membrane integration, which may
cause structural or functional changes in the membranes of exosomes [67].

Table 3. Comparison of labeling methods.

Labeling Methods

Pros

Cons

Reference

Covalent biding

Tight binding of
probes to proteins

Cannot distinguish between
exosomes Vs. non-exosome
proteins
May change membrane
protein functions which affect
the interaction of exosomes
with target cells

[66]

Genetic modification

Can avoid surface
modification

Genetic change of cells may
change the property of cells
and/or exosomes
Uneven loading into exosomes

[68]

Membrane integration
(lipophilic fluorescent
dyes)

Simple and easy

May cause clumping of
exosomes
Cannot distinguish between
lipid proteins and micelle
May cause background signals
from dissociated probes
May cause pseudo signals
even after clearance of
exosomes
May affect the interaction of
exosomes with target cells

[65]

Encapsulation by
electroporation

May avoid surface
modification

May cause aggregation or
fusion of exosomes

[65]
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E.ncaps.u'lation by Simple and easy May cause background signals [65]
lipophilic agents from released probes
Depends on transporter (e.g.,
GLUT1
Transporter-dependent . ) .
. Simple and easy Un-even encapsulation [75]
encapsulation .
May cause background signals
from released probes
May change the property of
Covalent biding of l\(j[‘;llscir;i/og i(:;iﬁfe
Metabolic labeling probes by click . Y g . [74,76]
. protein functions which affect
chemistry

the interaction of exosomes
with target cells




Int. . Mol. Sci. 2020, 21, 665 9 of 26
Table 4. Biodistribution of exosomes in literature.
Labeling . Nomenclature Isolation Purification Dose . Admin. Imaging Tissue
Modalit 11 A 1 Model Ref.
Method odality (Markers) Cell Source Method after Labeling (/Head) nimal Mode Route Method Distribution €
MLP,29 Bladder > liver
Covalent RI (murine ue SEC 0.6-1.8 MBq Mouse v > thyroid >
E liver-deri 1 o PET
binding () Vs iver-derived (1000008, g} dex G25)  (40-120 ng) (BALB/cJR;)) hock lung > kidney L0
progenitor 70 min) .
. > brain
cell line)
Human Mouse Liver > kidney,
Exosomes ucC (BALB/c) with tumor, spleen,
Covalent Fluorescence U937 SEC
. (CDY, ALIX, . (100,000 g, 40 pg syngeneic CT26 v VIS heart, lung, [77]
binding (Cy7-NHS) TSG101) leukimla 2h) (Sephadex G50) colon colon, brain,
cetis adenocarcinoma bladder, blood
ucC
(150,000 g,
Covalent Fluorescence Helicobacter 3h)and Not Mouse Mouse,
EV: Not disclosed Oral IVIS 78
binding (Cy7-NHS) s pylori DGUC ot disciose disclosed (C57BL/6) ra stomach (78]
(100,000 g,
2h)
(3h) liver >
. ucC Mouse kidney > lung
Covalent Fluorescence Bacterial EVs ucC
S E. coli (150,000 g, 15 g (C57BL/6 and P VIS > spleen > [79]
binding (Cy7-NHS) (OMVs) 3h) (150,000 g, 3 h) SKHI-E) small intestine
(24 h) liver
Mouse
Covalent RI Exosomes Murine ucC SEC (C57BL/6 and Liver > spleen
- 11
binding ("ndium) (CDS1, CD9) B16F10 (100,090 g (Sepharose CL. 1x10 NSG), I\% SPECT/CT . >bone, [80]
melanoma 90 min) 2B) melanoma- kidney, lung
bearing
(Tumor
exosomes)
Mouse tumor > liver >
UF (100
Mouse kD(a) (BALB/cor lung, spleen,
Covalent RI Exosomes MDSCs and UF . C57BL/J6) kidney, brain,
binding (1) (CD9, CD63) EPCs, ( g{‘)dogoc (100 kDa) 350 + 50 pCi Xenograft v SPECT/CT hourt [81]
HEK293 70 " )g' bearing 4T1 or (MDSC-
o AT3 exosome)
liver, lung,

tumor >
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kidney, spleen,
brain, heart
(EPC-
exosomes)
tumor > liver >
lung, kidney,
brain, spleen,
heart
ucC Liver, bladder,
Covalent RI (130,000 g SEC Mouse spleen >
. [#mTc(CO)s EVs Erythrocyte NG (Desalting 15 +2 Mbq v SPECT/CT . [82]
binding (HOp]" 30 min) Column) (BALB/c) kidney > lung,
and SEC heart, bone
(MCF7
exosomes)
liver > large
and small
intestines >
kidney, tumor,
Human R spleen, lung,
Mouse, athymic
MDA-MD- muscle, blood
Metabolic Fluorescence Exosomes Gel filtration MDA-MB-231 or /
labeling  (Cy3 or Cy5.5) (CD63) 231 and ExoQuick (G-25) 10 MCEF7 tumor v VIS (MDA-MD- — [74]
MCEF7 breast . 231 exosomes)
bearing .
cancer cells liver > large
and small
intestines >
lung > tumor,
spleen, kidney
> muscle,
blood
Luminescence HT29/CD63 ucC NA
Genetic (CD63- Exosomes Nluc and (110,000 g NA NA Female mouse (sC BLI Stomach, (83]
Engineering (CD63) HCD116/CD Y (Balb/c-nu/nu) implant (IVIS) intestine
NanoLuc) 70 min)
63Nluc of cells)
;1;];(;163 62/Rluc: lung>
Luminescence liver > spleen >
Genetic (Renilla EVs cancer cell ue Mouse BLI kidney
Engineering  Luciferase; (CD63, Alix) and MDA~ (100,000 g, NA By (BALB/c, female) v (IVIS) 62Rlug/DiR: 1071
Rluc) MB-231 60 min) N=3 liver > lung,
breast cancer
spleen

cells
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231Rluc: lung,
liver > spleen >

kidney
. Spleen, liver >
Luminescence ucC
Genetic . EVs HEK293T Mouse lung, kidney,
Engineering (G.jalussm (CD63, ALIX) cells (100'090 & NA 100 pg (athymic nude) v BLI brain, heart, [84]
Luciferase) 90 min)
muscle
. B16-Bl6 Lung > spleen
Luminescence ucC
. . 0 . .
bngmeermg (G0 Bosomes GO doooog,  Na RS SRV oo et b 15
& & Luciferase) 1h) He R
cells intestine
Mouse, K7M2 .
Exosomes ucC (human Liver, spleen >
Memb MR H UcC- UF 0.015 t 1
infemr;taigi (gadolinium) (CD9, CD63, uﬁzrés (120,000 g, (10 kDa) mmol/k: osteosarcoma) v MRI klilcrirrl:()er >h1el:§t, (86]
& & CD81) 90 min) & xenograft bl}‘,a,in g
(NU/NU)
Mouse, K7M2 .
Spleen > liver
Membran Fluorescen Exosomes Human UC- uc (human > tumor, lun,
embrane uorescence (CDY, CD63, uma (120,000g,  Not disclosed 5 mg/kg osteosarcoma) v LI-COR 1oL TS 86
integration (DiR) MSCs . > kidney,
CD81) 90 min) xenograft brain. heart
(NU/NU) am, hiea
Mouse TEP1
Membrane Fluorescence (prlma.ry T_EI TEI Not Mouse Thym?ls g
. . . Wnt4-exosomes thymic (Invitroge . . v IVIS lung, liver, [87]
integration (Dil) . (pre-labeling) disclosed (BALB/c)
epithelial n) spleen
cell)
Membrane Fluorescence CVs hCMEC/D3 uc 200 of Mouse Liver > spleen,
: : : 'S (60,000 SEC H& , ROVS VIS PICEn,  reg)
integration (DiR) (by sonication) B16 lipid (FVB albino) lung > brain
rpm, 24 h)
Exosomes
C2C12 ucC
Membrane Fluorescence (ALIX, CD63, . . Mouse Liver > spleen
1 t disclosed v VI
integration (DiR) CDs81, CD9, m ?ki:;ecell ( 0(1'(})10)0 & Not disclose 0g (C57BL/6) 5 >lung (9]
TSG101) y
uc Mouse
M Fl 7BL, Li 1
! embra.ne uorgscence Fxosomes BM-MSC (100,000 g, ucC 8 x 10° (C57BL/6) P VIS iver, spleen, [45]
integration (DiR) 3h) (100,000 g, ND) Tumor vs. non pancreas
tumor
Membrane Fluorescence Exosomes Mouse BM- UF + Mouse (24 h) Tumor >
E ick 30 BALB v VIS 90
integration (PKH67) (CD63) MSC ExoQuick xoQuic HE (BALB/c) spleen > (90]

TUBO tumor
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kidney, liver,
lung
Endothelial
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Abbreviations: AKI, acute kidney injury; BC, breast cancer; BLI, bioluminescence imaging; BMSC, bone marrow stromal cell; BW, body weight; CV, cellular vesicle;
CT, computed tomography; DGUC, density-gradient ultracentrifugation; EPCs, endothelial progenitor cells; FI, fluorescence intensity; FP, fluorescence protein;
GNP, gold nanoparticle; ICP-MS, inductively coupled plasma mass spectroscopy; IN, intranasal; IV, intravenous; IP, intraperitoneal; MDSCs: myeloid derived
suppressor cells; MPI, magnetic particle imaging; MR, magnetic resonance; MRI, magnetic resonance imaging; MSC, mesenchymal stem/stromal cell; NA, not
applicable; ND, not determined; NR, nuclear imaging; OMV, outer membrane vesicle; RI, radioisotope; RLU, relative luminescence unit; ROVS, retro-orbital venous

sinus; SC, subcutaneous; SEC, size exclusion chromatography; SPECT, single-photon emission computed tomography; SPIO, superparamagnetic iron oxide; TEI,
total exosome isolation reagent; UC, ultracentrifugation; UC-MSC, umbilical cord MSC; UF, ultrafiltration.
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Labeling of exosomes by encapsulation has been performed with various labeling probes such
as radioisotopes, nanoparticles, and fluorescent dyes (Table 4). Passive loading of probes is frequently
used. An interesting example of active loading of probes is the use of transporter proteins on the
membrane of exosomes. A study reported the encapsulation of glucose-coated gold nanoparticles by
the GLUT1 glucose transporter on the exosomal membrane [75]. Additional transporters are expected
to be available for the specific encapsulation of probes in exosomes obtained from different sources
with the advancement of research. However, the distribution or abundance of transporter proteins
on the exosomal membrane may cause the uneven loading of proteins. Sonication was also employed
to encapsulate probes in exosomes [76]. However, sonication may cause distortion or damage to the
exosomal membrane, eventually affecting the biodistribution of exosomes. Additionally,
superparamagnetic iron oxide (SPIO) nanoparticles have been used to label exosomes through the
transfection of exosome-producing cells [75]. It is important to recognize that the loading amount of
nanoparticles is restricted by their size. The hydrodynamic radius of SPIO nanoparticles in a previous
report [75] was 62 nm (https://www.magneticinsight.com/wp-
content/uploads/2016/05/VivoTrax_datasheet.pdf). Since the diameter of exosomes in the study is
around 100 nm [75], the loading efficiency of SPIO nanoparticles in exosomes seems to be limited.

Among the 29 papers reviewed, eight papers reported the labeling of exosomes by covalent
binding to probes. The most commonly used labeling modality for covalent binding was radioisotope
labeling (five out of eight) (Table 4). Fluorescent dyes (three out of eight) were also used for covalent
binding. The advantage of covalent binding is the low risk of pseudo-positive signals caused by the
spontaneous release of probes without covalent bonds. However, careful analysis is required since
modification of surface proteins by the covalent binding of probes may change the interaction of
exosomes and their target tissues or cells [73,76].

The most widely used labeling method is the membrane integration of lipophilic fluorescent
dyes (Figure 2, left). Fifty percent of the studies evaluated used the membrane integration strategy
with lipophilic fluorescent dyes (Table 4). For membrane integration, fluorescent probes were
overwhelmingly selected over other methods (Figure 2, right). DiR was the most frequently used
lipophilic fluorescent dye (Figure 3). DiR is a dialkylcabarbocyanine with NIR fluorescence which is
ideal for in vivo imaging since it has low absorption by biological materials [98]. The FDA-approved
NIR dye Indocyanine Green (ICG) is also able to label exosomes [99,100]. A potential issue is the
possibility of lipophilic dyes forming micelles in the liquid [73]. Therefore, it is of utmost importance
to compare the number of particles before and after labeling with lipophilic dyes. In addition, it is
necessary to include a proper negative control containing the appropriate amount of lipophilic dye
[45]. A buffer solution with lipophilic dyes incubated and processed using the same procedures
employed for the exosomes with lipophilic dyes may also be a good negative control.
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Figure 3. Fluorescent dyes used in biodistribution analysis of exosomes.
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3.3.2. Characterization of Exosomes

One unexpected finding is that many studies used exosomes or EVs without characterization.
As mentioned earlier, QC of exosomes is essential for both reproducible basic exosome research and
the development of exosome therapeutics. The ISEV also proposed minimal requirements in the
MISEV2018 guidelines for the identification of exosomes by analyzing specific markers [21].
Surprisingly, we found that approximately 40% of studies did not include the analysis of specific
markers (Figure 4). Other than publications with exosome-like vesicles from microorganisms or
exosome mimetics, 11 publications did not provide the results of specific marker analysis (Table 4).
Although the results of NTA or electron microscopic analysis were reported in some cases, these
results are not sufficient to confirm the identity of the exosomes used in the studies. More
importantly, analysis of specific markers is especially important to compare the properties of
exosomes and analyze the recovery rate between before and after labeling.

Not tested,
15, 39%

Tested, 23,
61%

Figure 4. Status of analysis for specific markers for exosomes or extracellular vesicles (EVs).

3.3.3. Exosome Isolation Methods

Selection of the appropriate isolation method is essential for the industrial development of
exosome-based therapeutics [50,51]. As shown in Figure 5, the dominant method for isolating
exosomes is UC. This implies that UC is still the general method used to isolate exosomes in most
academic settings, although the method is not ideal for the mass production of exosomes for the
development of therapeutics. SEC was reported in only one publication [82]. In a few studies,
precipitation with commercial kits was used to isolate exosomes. The process should be carefully
monitored to determine whether the additives used for precipitation such as PEG have adverse
effects on the labeling or biodistribution of exosomes. Ideally, these additives should be removed
from the final exosome products before administration to an experimental animal. One publication
reported that there was no significant difference in the biodistribution of exosomes isolated using UC
or SEC [93].

26

Number of Studies
I

2 1 1 1

1 2 2
0 H om = = B W
uc uc + DUGC UF+UC UF+ ExoQuick TEI

DGUC ExoQuick
uc PPT

UF + SEC

Figure 5. Isolation methods of exosomes in literature of exosome biodistribution.
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Another important aspect to consider is the removal of excess unlabeled probes from labeled
exosomes. UC was the most commonly used method for removing free probes in the studies
evaluated (Figure 6). Interestingly, SEC was the second most frequently method for removing free
probes. One drawback of SEC was the increase of sample volume with multiple fractions during the
isolation process. To avoid this, methods based on the gel filtration (GF) principle are possible
alternatives to conventional SEC. Commercial GF columns are already available to remove free
probes by simple centrifugation without a significant increase in the sample volume [44,74,82,97].
Precipitation methods were also used to remove free probes. Again, the possibility of adverse effects
from the additives used for precipitation cannot be excluded without further steps to remove the
additives.

e
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disclosed

Figure 6. Methods to remove unlabeled probes from labeled exosomes.

3.3.4. Determination of Exosome Dose

Determination of the exosome dose for biodistribution analysis is another essential factor. Since
exosomes are composed of lipids, proteins, and nucleic acids, it is possible to determine the exosome
dose from the total amounts of lipids, proteins, or nucleic acids, respectively. It is also possible to
determine the exosome dose from the total number of particles [21]. As shown in Figure 7, the most
frequently used parameter for exosome dose determination was the amount of total proteins,
followed by the number of particles. Parallel description of the amount of proteins and the number
of particles was also reported in three publications as suggested by the ISEV in MISEV2018 [21]. The
range of total proteins was from 10 to 500 ug per animal and that of the number of particles was from
2.8 x 10° to approximately 3.8 x 10" particles per animal (Table 4). Interestingly, all publications
exclusively reported the use of mice for exosome biodistribution analysis. Recently, increasing
evidence suggests that the use of zebrafish is a promising new approach to study in vivo physiology
and pathology of exosomes [101]. Indeed, the transparency and small size of the zebrafish embryo
enables live whole-body imaging analysis for better understanding of biodistribution including
exosome uptake and fate.
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Figure 7. Determination of exosome dose in biodistribution. Abbreviations: Protein, total amount of
proteins; number, total number of particles; P + N, total amount of proteins with total number of
particles; Lipid, total amount of lipids.
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3.3.5. Routes of Administration

For in vivo analysis of exosome distribution, intravenous (IV) injection of exosomes was the
dominant (78%) administration route (Figure 8). Three publications used intraperitoneal injection as
an alternative route. The administration of exosomes through intranasal, hock, subcutaneous, and
retro-orbital venous sinus routes was rarely used. The most frequent accumulation tissues for
exosomes after IV injection were reported as the liver, lung, spleen, and kidney (Table 4). Although
the modification of surface proteins such as glycosylation may have affected the in vivo distribution
of exosomes in a few reports [66,67], additional studies with more animals seems to be necessary for
more accurate analysis. It was also reported that there was a difference in the biodistribution of
exosomes according to the exosome-producing cells [68]. Further studies will be needed to determine
the significance of these findings.

Injection Routes
ROVS, 1, 3% SC, 1,3%
Oral, 1,3%
IN, 1,3%

Hock, 1,2%

IP, 3,8%

1V,29,78%
Figure 8. Administration route of exosomes for biodistribution analysis.

3.4. Therapeutic Implication of Exosome Biodistribution

As mentioned, the information on in vivo distribution of exosomes provides basis for prediction
of dose and potential side effects. In addition, it also provides the clue for target tissues of specific
therapeutic application. Several studies have already provided the relevance between biodistribution
and therapeutic effects.

3.4.1. Natural Targeting Properties of Exosomes

Tissue tropism is dependent on the surface composition of exosomes [102]. Different integrin
compositions determine the organotropism of exosomes derived from different tumors [103].
Secreted proteins such as Wnt4 and TGF-31 have been identified to be associated with exosomes
[53,104]. Wnt4-associated exosomes derived from thymic epithelial cells accumulated in the thymus
of mice and this tropism was further enhanced by overexpression of Wnt4 in the originating cells,
which might induce regeneration of thymus [87]. More interestingly, EVs from Helicobactor pyroli was
reported to preferentially accumulate in stomach and induce inflammatory responses [78].

3.4.2. Tumor-Homing of Exosomes

Tumor-homing exosomes could be exploited as targeting delivery vehicles. As an example,
hypoxic cancer-homing exosomes, which were loaded with olaparib, demonstrated retarded tumor
growth in xenograft mice [75]. Interestingly, exosomes derived from MSCs (MSC-exosomes) have
been reported to exhibit tumor-homing properties similar to those of MSCs [105]. Human UC-MSC-
exosomes were reported to accumulate in tumor of mouse osteosarcoma K7M2 cells in nude mice
[86]. These UC-MSC-exosomes reduced proliferation of human osteosarcoma 143B and mouse
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osteosarcoma K7M2 cells in vitro in a dose-dependent manner by inducing apoptosis. The tumor-
homing of MSC-exosomes has been successfully adopted to deliver therapeutic miRNAs to reduce
tumors in xenograft mice with patient-derived pancreatic cancer [45], and syngeneic breast tumors
in mice [90]. Interestingly, beyond organotropism of tumor exosomes, generalized tropism of tumor
exosomes toward neoplastic tissues from different types or species have also been reported [106].

3.4.3. Accumulation of MSC-Exosomes in Damaged Tissues

An interesting finding is that MSC-exosomes were preferentially accumulated in the kidneys of
mice with glycerol-induced acute kidney injury compared to the distribution in normal mice [95].
The application of MSCs as a cell-based therapy for acute or chronic kidney disease has been studied
[107]. MSC-exosomes have also been reported to be effective for kidney diseases in various animal
models [108]. Since MSCs are known to accumulate in damaged tissues through the interactions of
receptors on the MSCs and target tissues [109,110], it is highly probable that MSC-exosomes are also
localized in damaged tissues due to these receptor interactions. Similarly, exosomes from endothelial
progenitor cells showed accumulation in ischemic kidney to prevent ischemic injury through
CXCR4-SDF-1a interaction [91].

3.4.4. Tissue Targeting by Exosome Engineering

In addition to natural cell-targeting abilities, it is also possible to engineer exosomes to target
specific tissues or cells [102]. PEGylation of exosomes resulted in targeted accumulation of exosomes
derived from cardiosphere-derived cells in ischemic myocardium in mice [111]. Targeted delivery of
exosomes by genetic modification of their surface proteins has been also been reported: (1) brain
targeting by rabies viral glycoprotein (RVG) peptide or RGD motif [19,112]; and (2) tumor targeting
by EGFR-specific nanobodies or HER2-specific single-chain variable fragments [113]. Recently a
peptide CP05, which binds CD63, was introduced as an anchor for homing moieties to change the
biodistribution of exosomes [89]. Engineered exosomes with tumor specificity could be also used to
delivery chemotherapeutic agents to reduce tumors in vivo [76]. In fact, exosomes are being
developed as drug carriers since they are a natural-born delivery vehicle. A wide variety of
therapeutic molecules can be delivered by exosomes, including small molecules [114,115], anti-cancer
drugs such as paclitaxel [116] and doxorubicin [117], and oncolytic viruses as well [116,118,119].

4. Conclusions

Exosomes from different cell types have unique features according to their originating cell types
and are being rapidly developed as therapeutic agents, drug delivery vehicles, and liquid biopsy
markers. Exosomes derived from MSCs are attractive for next generation cell-free therapeutics since
they recapitulate MSC capabilities of repair/regeneration, anti-inflammation, and immune
modulation and overcome the potential risk and limitations of cell-based therapeutics.

Analysis of the biodistribution of exosomes is an essential step to determine the therapeutic dose
and predict the potential side effects of exosomes. However, this is extremely challenging because of
the nano-range of their sizes and complex nature of their composition. QC of produced exosomes is
also extremely important to ensure reproducible results. Additionally, the labeling methods and
analytical modalities are limited by the characteristics of exosomes produced by living cells. A
growing number of studies and advances in the methods and modalities are expected to provide
proper evaluation solutions for high quality exosomes therapeutics in the near future.
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Abbreviations
AKI acute kidney injury
BC Breast cancer
BLI bioluminescence imaging
BMSC bone marrow stromal cell
BW body weight
CAGR compound annual growth rate
Ccv cellular vesicle
CT computed tomography
DGUC density-gradient ultracentrifugation
DLS dynamic light scattering
EPCs endothelial progenitor cells
EVs extracellular vesicles
FI fluorescence intensity
FP fluorescence protein
GMP good manufacturing practice
GNP gold nanoparticle
GvHD Graft-versus-host disease
ICP-MS  inductively coupled plasma mass spectroscopy
IN intranasal
ISEV International Society for Extracellular Vesicles
I\Y% intravenous
r intraperitoneal
MDSCs  myeloid derived suppressor cells
MEFDS Ministry of Food and Drug Safety, Korea
MISEV Minimal Information for Studies of Extracellular Vesicles
MHC Major histocompatibility complex
MPI magnetic particle imaging
MRI magnetic resonance imaging
MSCs mesenchymal stem/stromal cells
MVBs multivesicular bodies
NA not applicable
ND not determined
NIR near infrared
NR nuclear imaging
NTA nanoparticle tracking analysis
OMV outer membrane vesicle
PEG polyethylene glycol
PET position-emission tomography
QCs quality controls
RI radioisotope
RLU relative luminescence unit
ROVS retro-orbital venous sinus
RPS resistive pulse sensing
SC subcutaneous
SEC size exclusion chromatography
SPECT single-photon emission computed tomography
SPIO superparamagnetic iron oxide
TEI total exosome isolation reagent
TFF tangential flow filtration
ucC ultracentrifugation
UC-MSC  umbilical cord MSC
UF ultrafiltration
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